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INTRODUCTION

For decades, hydrogen has been promoted as the 
transportation fuel of the future because it has the 
highest energy output per mass and because of its 

environmentally friendly combustion products: water 
[1]. The storage of hydrogen fuel in solid matrices (metal 
hydrides sponges) ameliorates the safety issues associated 
with its flammability and eliminates the need to cool it 
and compress it into a liquid. However, solid storage 
materials are costly, prone to decomposition, corrosion, and 
overheating upon recharging [2,3]. Copper, the lightest and 
most affordable of the noble inert metals, has a peculiar 
affinity toward hydrides that makes it an ideal candidate for 
a hydrogen storage material.

The study of copper hydride cages is motivated on the 
one hand by the versatility of copper organic compounds in 
organic chemistry, and on the other hand, by the added reac-
tivity associated with large surface areas afforded in small 
dimensions [4]. At the nanoscale, gold particles are excellent 
oxidation catalysts facilitating the production of aldehydes, 
ketones, and epoxides from alkenes [5]. At the molecular 
level, organocuprates or Gilman reagents are classical carbon 
coupling reagents [6,7]. Copper hydrides (Stryker reagents) 
find use as reducing agents and copper halide salts catalyze 
the hydrolysis of allyl halides [7,8]. Recently, the use of a 
copper catalyst to promote the asymmetric addition of a 
hydrogen atom and an amine functional group into an inac-

ABSTRACT: Copper clusters are nanoscale materials comprised of a metal core or frame enclosed by a mantle of 
stabilizing ligands; their exploration offers progress in diverse fields, such as medicine, electronics, and fundamental 
chemistry as catalysts, reducing agents, corrosion inhibitors, and petroleum sweeteners. When stabilized with 
dithiocarbamate (DTC) ligands (L), copper clusters show a propensity for reversible hydrogen uptake and a 
remarkable versatility in size and shape as demonstrated by the facile substitution of the protecting groups and 
multitude of species attainable. The purpose of this report is to demonstrate the versatility of the Cu-DTC system 
by the novel use of an aromatic dibenzyl DTC ligand (L’) to generate clusters of previously known composition (i.e., 
Cu8HL’6 PF6). As demonstrated herein, the new materials are air stable and amenable to characterization by high-
resolution electrospray ionization mass spectrometry, 1H-nuclear magnetic resonance spectrometry, powder X-ray 
diffraction, Fourier Transform Infrared Spectroscopy, Ultraviolet-Visible spectroscopy, and Inductively Coupled 
Plasma Spectrometry. The subject ‑ hydrogen-rich caged cluster materials have potential applications as hydrogen 
storage sponges to great benefit to material science, energy, and other chemical fields.
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tivated internal alkene has been demonstrated [9]. Copper 
hydride clusters have been shown to catalyze the hydrogena-
tion of ketones to alcohols [10].

Copper cages and inorganic copper clusters and networks 
have the potential to function as reagents and catalysts because 
these entities lie in between the molecular and nano-metallic 
state and their reactivity is largely unexplored and unpredict-
able. However, unlike gold and silver, copper nanoparticles 
pose a major synthesis challenge due to their tendency to 
oxidize upon exposure to air [11]. Recently, Edwards et al. 
[12] reported on the synthesis of air-stable copper hydride 
ion complexes with composition [Cu28H15L12]PF6 where “L” 
stands for dithiocarbamate (DTC) ligand that stabilizes the 
central copper core against oxidation. This 28-Cu-atom clus-
ter is capable of storing fifteen (15) hydride (H-) ions that can 
be reversibly released as hydrogen (H2) fuel by controlled 
changes in temperature, acidity, or ultraviolet light exposure. 
The reversibility of the hydrogen charging–discharging pro-
cess, its chemical stability, and its high thermal conductivity 
render the copper-hydride cluster a promising material for 
applications in energy and transportation fields. The so-called 
Chinese puzzle ball is only one of many hydride structures 
that may be produced with varied copper composition, includ-
ing Cu6 [13–16], Cu7 [17,18], Cu8 [19–22], Cu13 [23], Cu14 
[24,25], Cu18 [26,27], Cu20 [25,28,29], Cu25 [10,30], Cu29 [31], 
Cu32 [32,33], Cu53 [34], and Cu61 [35]. Recent work in this 
fertile field, including the use of copper hydride compounds 
as catalyst, has been summarized by several authors [36–41].

The primary objective of the work described here is to 
demonstrate the versatility of the copper-DTC cluster sys-
tem by substituting the diisopropyl ligand (L) in a copper 
monohydride cluster of known composition and structure 
[20] (Cu8HL’6 PF6) with an aromatic dibenzyldithiocarba-
mate ligand (L’). The aromatic clusters are regenerated upon 
decomposition by the addition of excess borohydride, a 
desirable property that can lead to the use of these clusters 
as hydrogen storage materials. The substitution is significant 
because it imparts the cluster the rigidity, functionality, and 
stability associated with aromatic groups while suggesting a 
plethora of other similar substitutions. The new materials are 
selectively characterized by high-resolution electrospray ion-
ization mass spectrometry (ESIMS), proton nuclear magnetic 
resonance (1H-NMR) spectrometry, powder X-ray diffraction 
(pXRD), Fourier Transform Infrared Spectroscopy (FTIR), 
Ultraviolet-Visible spectroscopy, and Inductively Coupled 
Plasma Spectrometry (ICP).

RESULTS AND DISCUSSION
The synthesis of copper hydride compounds involves the 
controlled reaction of copper(I) cation with a reducing agent 
(lithium borohydride), in the presence of a ligand (protecting 
agent) in a suitable solvent (Tetrahydrofuran) and under an inert 
atmosphere (Nitrogen gas blanket). Details are provided in the 

Supplementary Material. In practice, a multitude of products 
with varying copper to ligand composition is produced 
depending on the ligand to copper ratio and other reaction 
conditions, as testified by the broad list of published structures 
from the above synthetic approach [20,24,28,30,32,36].

Mass analysis of the product after several months of stor-
age revealed that Cu8HL’6 PF6 is a stable fragment species 
that dominates the spectra Figure 1, as previously reported.20

The inset in Figure 1 represents an isotopic fit of the 
ESIMS envelope by a singly charged Cu8HL6

+ fragment, 
demonstrating that the spectrometer can resolve the compli-
cations posed by the existence of two copper isotopes. More 
significantly, the isotopic fit demonstrates the presence of a 
hydride in the Cu8HL’6 PF6 cage in accordance with pXRD 
and 1H-NMR results.

Higher-mass clusters are observable at apparent lower 
concentrations as doubly and triply charged species (Figure 2)  
by tuning the parameters of the mass spectrometer. 

As is typical of electrospray mass spectra, a number of 
peaks are apparent in the spectra of Figure 2, most probably 
associated with multiply charged states of the same species, 
adducts, and mild fragmentation products of the ionization 
process. A detailed discussion of each component is beyond 
the scope of this report that focuses on the abundance and 
special stability of the Cu8HL6 cluster. A major shortfall of the 
ESIMS technique is that it may be biased to species that are 
easily ionizable and it may be the case that the overwhelm-
ing abundance of the Cu8HL’6

+
 species in Figures 1 and 2 is 

partly due to this bias in detection. Indeed, the abundance of 

Figure 1. Positive-mode ESIMS analysis of Copper hydride 
material showing the dominance of Cu8HL’6 species. Also 
shown as an inset is the theoretical isotopic distribution fit to 
Cu8C90N6S12H85.
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the parent [Cu28H15L12]PF6 product in the freshly synthesized 
material is supported by elemental analysis (Table 1).

The experimental Cu/S ratio (1.1) is consistent with the 
presence of the larger [Cu28H15L12]PF6 (1.2) species in the 
freshly synthesized product over that of the Cu8HL’6 PF6 
cage (0.67).

Although the freshly prepared material is air-stable in 
solid form, it is susceptible to decomposition when exposed 
to sunlight and when stored in dichloromethane solution for 
extended periods of time (days), as judged by its change of 
color from deep red/orange to yellow (mustard) and olive 
green. However, the clusters could be regenerated by the 
addition of excess reducing agent.

Powder samples were analyzed for crystallinity in a 
pXRD instrument using a narrow slit (delta 2 theta = 0.013 
deg), as summarized in Figure 3, where a geometric correc-
tion Sin 2θ has been applied to the intensities.

It is clear from the spectrograph that the clusters protected 
with dibenzyl ligands show long-range order and interplanar 
spacing of a few nanometers. In addition, it is also apparent 
that the salient features of the pXRD spectrograph may be 
attributed to contributions from both the monohydride cage 

and the empty Cu8 cage. Indeed, efforts to extract cell param-
eters using CMPR—a free access software [42] favored 
large orthorhombic cells must likely enclosing four cages  
(a =37.96°A, b = 50.50°A, c = 13.6°A; α−−β—δ = 90°). As 
suspected from the presence of at least two structures, the  
Figure of Merit of 4.8 is low, given that a value of 10 
represents a threshold value [43]. The structure of the Cu8HL6 
PF6 cage reported by others [36] corresponds to a distorted 
cube (tetracapped tetrahedral, or bicapped octahedral) with 
a hydride at the center. Upon loss of the endohedral hydride, 
the cube becomes well defined by eight copper atoms (one 
per vertex). One dithiocarbamate binds to each of the six 
faces of the cube. Both structures are sufficiently different to 
merit future attempts at separation using LC/MS facilities. 
It is conceivable that the hydride may be also be regener-
ated in situ by the intentional addition of a hydrogen source 
(hydrogen gas or R3SiH species) rendering the clusters as 
hydrogenation catalysts and hydrogen storage sponges. 

According to Edwards’s et al. [12], the hydride in the 
Cu8HL6 PF6 species with diisopropyl ligands would appear 
around 7.05 ppm. Given the fact that the phenyl hydrogens of 
L’, L’= S2CN(CH2)2(C6H5)2 are in the range of 7.00–7.5 ppm, 
the hydride in the 1H NMR spectrum will be hard to detect. 
However, the integration ratios of L’ in that region are theoret-
ically 5:2, while the observed integration ratios (Figure 4) of 
the Cu8HL6 species are slightly higher than the 5:2 ratio which 
could suggest that the hydride of Cu8HL’6 PF6 is imbedded in 
the phenyl area.

Table 1. Elemental Analysis of fresh [Cu28H15L12]PF6 
product by ICP compared to expected abundances. Analysis 
performed by Wallace Laboratories, El Segundo, CA.

Ratio ICP [Cu
8
HL’

6
]PF

6
[Cu

28
H

15
L’

12
]PF

6

Cu/S 1.1 0.67 1.2

C/S 10. 7.5 7.5

N/S 0.69 0.50 0.50

P/S 0.054 0.083 0.042

Figure 3. pXRD spectrograph of the Cu8HL’6 PF6 cage (dark 
trace) compared to simulated spectra from published  
single-crystal structures of Cu8HL6

+ 17 and the empty Cu8L6
2+ 

with no hydride [22].

Figure 2. Positive-mode ESIMS analysis of Copper hydride 
material showing the presence of the parent species, 
Cu28H15L’12 +species. Also shown as an inset is the theoretical 
isotopic distribution fit to Cu28C180N12S24H183.
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The phenyl hydrogens and the methylene group were 
shifted from 7.29 to 7.11 ppm and 5.24 to 5.29 ppm, respec-
tively, which supports the assumption of L’ being bonded 
to a copper core as detailed in the Supplementary Material.

A shift in frequencies of key vibrational modes of the 
ligand was observed by FTIR (Supplementary Material). 
Most notably, a blue shift in the νC-SS vibration from 990 to 
1,000 cm−1 and the existence of a single band in that region 
is consistent with dibenzyldithiocarbamate anchoring to the 
copper cage as a bidentate ligand [44].

The optical spectra of the cluster (Figure S6 of the 
Supplementary Material) is dominated by three bands in the 
ultraviolet region (255, 295, and 350 nm) typical in dithi-
ocarbamate ligands [45], and an onset of absorption in the 
visible at 500 nm. There is no evidence for a local surface 
plasmon band indicative of metal nanoparticles are fine 
structure of larger molecular clusters [46].

Lower nuclearity clusters such as Cu8HL’6 PF6 have been 
shown to be fragmentation products of larger clusters [12] 
and thus are more stable. As such, it is suggested that the 
added functionality of the substitutions reported here may be 
exploited to chemically link smaller clusters into a larger, rigid 
network that may be used as a robust hydrogen storage sponge. 

CONCLUSION
The results described above show that cluster hydride 
materials allow the substitution of different functional groups 
while retaining well-known stable compositions. These new 
materials offer ample opportunities for further investigations 
which may include even larger clusters or cluster networks, 
of well-known composition and structure, that are copper-
rich but in addition to hydrides may incorporate other lighter 
alloys or intermetallic phases. For example, a copper analog 
of the famous A145X60 clusters, wherein normally A = Au or 
dopant (Ag, Cu, Pd . . .) atoms and X = ligand, would be of 

great interest. Ongoing research on this subject pursuits the 
following objectives:

A) �Impart coupling functionality to the ligand stabilizing 
the cluster by attaching a cross-linking carboxylic, 
amine, organosilane functional group to its terminus. 

B) �Impart coupling functionality to the cluster: Perform 
conventional ligand substitution reactions to impart 
pre-made clusters with the added functionality [29]. 
Alternative routes to be studied in parallel are to syn-
thesize the cluster using the functionalized ligands 
and to modify the ligand while attached to the clusters.

C) �Synthesize hydrogen sponges by joining the clusters 
to each other using conventional protein or organosi-
lane conjugation chemistries.

D) �Chemically attach/bind the hydrogen sponge onto 
bulk metallic substrates to enable its use as fuel stor-
age devices and facilitate heat dissipation during 
recharging of the sponge.

E) �Quantify hydrogen-absorption performance and 
perform H-D exchange experiments to confirm the 
hydride count.
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METHODS
When producing copper-hydride compounds, the synthesis 
was performed in tetrahydrofuran using Tetrakis(acetonitrile)
copper(I) hexafluorophosphate as the Cu+ source and 
sodium dibenzyldithiocarbamate as the stabilizing ligand.

Relevant reagents and reaction parameters are summa-
rized in Table S1.

In a typical reproducible synthesis, 3 mmol of Cu(I) 
where suspended in 10 mL of THF (Slurry A). A second 
solution was prepared (B) with 1.2 mmol of ligand and 4 
mmol of the lithium borohydride reducing agent dissolved 
in 30 mL of THF. After the system was evacuated and 
purged, Slurry A was added via cannula injection to Solu-
tion B under a constant flow of ultra-high purity nitrogen for 
one to two hours. As summarized in Figure 1, the reaction 
products may be purified by evaporation of solvent, washing 
with methanol, and redissolving in DCM, and precipitation 
with excess methanol to yield an orange/red solid that could 
be redissolved in dichloromethane (DCM) and toluene. The 
exploratory reaction produced clusters with a yield of 30 % 
(mp. 230-235°C).

Composition was probed via ESI-MS, NMR, and Ele-
mental Analysis. Size and structure were assessed via pow-
der X-Ray Diffraction.

PROTON NUCLEAR MAGNETIC RESONANCE 
CHARACTERIZATION
The phenyl hydrogens and the methylene group were shifted 
from 7.29 ppm to 7.11 ppm and 5.24 ppm to 5.29 ppm 
respectively which can be given credit to L’ being bonded 
to a copper core. The theoretical integration ratios are 4:2:4 
for the ortho, para, and metal hydrogens, respectively. The 
para hydrogen is merged into the ortho or meta regions 
which then yield two regions.[1] Region A has an area of 
5 while the area of region B has an area of 6 in respect to 
the methylene hydrogens. Given that the total area has an 
integration value of 11 we can extrapolate that a hydride is 
in region B. From the mass spectrum the abundance of the 
[Cu28H15L’12]PF6 cluster is small compared to Cu8HL’6 
PF6 cage. Hence the signals near: 4.20, 1.25, and -0.85 ppm 
for the [Cu28H15L’12]PF6 hydrides are not noticeable.

MASS SPECTROMETRY ANALYSIS
Mass analysis were performed on a Bruker micrOTOF 
time-of-flight mass spectrometer with an electrospray 
ionization source (ESI-MS) using toluene as a solvent. Key 
operational parameters are summarized below. Isotopic fits 
to experimental envelops were performed using mMass - 
open source mass spectrometry tool.[2]

FTIR Characterization
Raw ligand and product were analyzed as compressed 
powders in a Perkin Elmer Spectrum 100 FTIR spectrometer 
equipped with an ZnSe ATR accessory. After exhaustive 
purification, the product shows pronounced IR absorption 
at 1483 cm-1 characteristic of νC-N vibrations with partial 
double bond character in metal dithiocarbamate complexes 
(Figure S5).[2] It should be noted that the band is red shifted 
relative to the starting sodium dibenzyldithiocarbamate 

Table S1. Starting reactants for the synthesis of CuH materials.

System CuHCCC Molar Quantities

Copper(I) Source [Cu(CH3CN)4]PF6 3 mmol 

Ligand Dibenzyldithiocarbamate 1.2 mmol 

Solvent Tetrahydrofuran 40 mL 

Reducing Agent Lithium borohydride 4 mmol 

Work Up Methanol wash, Crystallization from DCM 
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stock (1493 cm-1). Also noteworthy is the blue shift in 
νC-SS vibration in the cluster (1000. cm-1) relative to the 
free ligand (990 cm-1).[4] The blue shift is consistent with 
a shift from antisymmetric to symmetric vibrational mode 
associated with a bidentane ligand.[5]

Aromatic νC-H modes are observed at 3030 and 3068 cm 
are only slightly red The shifting of spectral bands depicted 

in Figure S5 is significant because it shows that the signal is 
NOT due to excess ligand unbound to the cluster.

UV-VIS Characterization
The optical spectra of the product (Figure S6) was 
measured from 240 nm – 800 nm in a Beckman D800 
spectrophotometer using Tetrahydrofuran (THF) as 

Figure S1. Synthesis of CuH clusters protected with dibenzyldithiocarbamate ligands.

Table S2. Key electrospray ionization mass spectrometer parameters.

Source Ion Optics Time of Flight TOF Processing

Type ESI Capillary Exit 200.0 V Corrector Fill 40 V Summation 5000 x

Focus Not active Skimmer 1 60.0 V Pulsar Pull 770 V Guessed Noise 200

Scan Begin 50 m/z Hexapole 1 25.0 V Pulsar Push 770 V Peak Width 5 pts

Scan End 2000 m/z Skimmer 2 28.1 V Reflector 1767 V Average Noise 10

Ion Polarity Positive Hexapole 2 27.0 V Flight Tube 8600 V Guessed Average 100

Capillary 4500 V Hexapole RF 800. V Corrector 
Extract

467 V

End Plate 
Offset

-500 V Transfer Time 225.0 µS TOF Detector 2100 V Mass Calibration

Nebulizer 1.0 Bar Pre-Pulse Storage 
Time

43 µS Regression Mode Linear

Dry Heater 145 oC Lens1 Storage 50.0 V C0 201.4898

Dry Gas 5.0 mL/min Lens 1 Extraction 27.3 V C1 405780.03

Divert Valve Source Lens 2 9.8 V C2 0

Lens 3 −30.2 V

Lens 4 0.0 V

Lens 5 −40.0 V
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a solvent. The scan started at 240 nm to avoid solvent 
interference (cut-off frequency of 220 nm). The ultraviolet 
region of the spectrum is dominated by three bands arising 
from transitions in the the ligand.[6] The bands at 255nm 
and 295 nm are due to transitions in the thiocarbonyl 

group. The salient hump at 350 nm is associated with 
bonding to nonbonding (n → π*) transitions of electrons 
in one of the sulfur atoms.[6] The visible region shows a 
monotonously decaying signal responsible for the amber 
hue of dilute solutions. An onset of absorption at 500 nm 

Figure S2. Molecular Structure for L’ (sodium N,N-dibenzyldithiocarbamate).

Figure S3. 1H NMR (CD2Cl2, 300 MHz) spectrum of Cu8HL’6 PF6 Cage.

Figure S4. 1H NMR (CDCl3, 400 MHz) Theoretical spectrum of L’.
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Figure S5. Comparison of FTIR spectral features of product (green trace) to sodium 
dibenzyldithiocarbamate hydrate (red trace). The spectra of the ligand has been displaced 
vertically for ease of comparison.

Figure S6. UV-Vis Spectra of Copper Hydride Cluster.

10.1021/aaafmenergy.8b01488
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(~ 2.7 eV) is apparent when the absorbance is plotted 
against photon energy (eV) and the absorbance is scaled 
as 1/E2 to facilitate comparison to absorption by bulk 
gold.[7,8]

REFERENCES
1.	� Castillo, A. M.; Patiny, L.; Wist, J. Fast and accurate algorithm 

for the simulation of{NMR} spectra of large spin systems. J. 
Magn. Reson. 2011, 209, 123 – 130. 

2.	� Hogarth, G., Transition Metal Dithiocarbamates: 1978–2003. 
Progress in inorganic chemistry, 2005, 53, pp.71-561. 

3.	� Strohalm, M., Kavan, D., Novak, P., Volny, M. and Havlicek, 
V., mMass 3: A Cross-Platform Software Environment for 
Precise Analysis of Mass Spectrometric Data. Analytical 
chemistry, 2010, 82(11), pp.4648-4651. 

4.	� Grigolli, T.M., Cavalheiro, E.T.G., Neto, J.G. and Chierice, 
G.O., Spectrophotometric Study of Complex Formation 

Eequilibria of Ni (II) Ion with Benzyl-, Phenyl-and 
Dibutyldithiocarbamates. Journal of Solution Chemistry, 
1994, 23(7), pp.813-821. 

5.	� Gomathi, G., Sathiyaraj, E., Thirumaran, S. and Ciattini, S., 
Effect of Functionlization of N, N-dibenzyldithiocarbamate: 
Synthesis, Spectral and Structural Studies on bis (N-benzyl-
N-(4-methoxybenzyl) dithiocarbamato-S, S′) zinc (II) and 
bis (N-benzyl-N-(4-cholrobenzyl) dithiocarbamato-S, S′) 
cadmium (II) and their Use for the Preparation of MS (M= Zn, 
Cd). Journal of Sulfur Chemistry, 2016, 37(1), pp.23-36. 

6.	� Halls, D.J., The Properties of Dithiocarbamates A Review. 
Microchimica Acta, 1969, 57(1), pp.62-77. 

7.	� Johnson, P.B. and Christy, R.W., 1972. Optical Constants of 
the Noble Metals. Physical review B, 6(12), p.4370. 

8.	� Wyrwas, R. B., M. M. Alvarez, J. T. Khoury, R. C. Price, T. G. 
Schaaff, and R. L. Whetten. The Colours of Nanometric Gold. 
The European Physical Journal D 2007, 43, pp. 91-95.

Figure S7. Optical Absorption of Cu H cluster (red solid trace) compared 
to spectral features of bulk gold (green dotted trace).
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