Test #2	2			АМАТ	YC St	udent	Mathe	ematic	s Leag	ue	Februa	ry/March 2008
1.	If $g(x)$	$(-1) = x^{-1}$	2 + 1, find	nd g(2)								
А.	1	B.	2	C.	5	D.	9	E.	10			
2.	Airpo than 3 Thus	ort runv 360° of a runw	vays ar the run ay with	e labele way's n headi	ed by t directi ng 223	wo nur on mea ° is lab	nbers g isured eled 22	giving from n What	the non orth to t is the o	negative clo the nearest 1 other numbe	ckwise a 10°, divi er on thi	angles less ded by 10. s runway?
А.	4	B.	14	C.	16	D.	32	E.	40			
3.	The equation $a^3 + b^3 + c^3 = 2008$ has a solution in which <i>a</i> , <i>b</i> , and <i>c</i> are distinct even positive integers. Find $a + b + c$.											
A.	20	B.	22	C.	24	D.	26	E.	28			
4.	For how many different integers b is the polynomial $x^2 + bx + 16$ factorable over the integers?											
A.	2	B.	3	C.	4	D.	5	E.	6			U U
5.	Let f($(x) = x^2 \cdot$	-2x + 4	. Whic	h of th	e follov	ving is	a facto	r of f(x)	- f(2y)?		
A. x	+ 2y	B. <i>x</i> +	2y + 2	C. ג	c - 2y +	2 D.	x + 2	y - 2	E. non	e of these		
6.	In squ at the	uare M. midpo	ATH, M pint of 7	[and A TH. Fin	lie on nd the	a circle lengths	of rad of the	ius 20, sides c	and the	e circle is tan quare.	gent to s	side \overline{TH}
A.	24	В.	26	C.	28	D.	30	E.	32			
7.	A fair coin is labeled A on one side and M on the other; a fair die has two sides labeled T, two labeled C. The coin and die are each tossed three times. Find the probability that the six letters can be arranged to spell AMATYC.											
A.	$\frac{1}{60}$	B.	$\frac{1}{48}$	C.	$\frac{1}{36}$	D.	$\frac{1}{24}$	E.	$\frac{1}{12}$			
8.	What	is the	value o	f (log ₆₂₄	, 625)(I	og ₆₂₃ 62-	4)(log ₆₂	₂ 623)	.(log ₆ 7)	$(\log_{5} 6)?$		
A.	2	B.	2.5	C.	4	D.	5	E.	6			
9.	The letters AMATYC are written in order, one letter to a square of graph paper, to fill 100 squares. If three squares are chosen at random without replacement, find the probability to the nearest 1/10 of a percent of getting three A's.											
A.	3.3%		B.	3.7%		C.	4.0%		D.	7.3%	E.	11.1%
10.	A student committee must consist of two seniors and three juniors. Five seniors are able to serve on the committee. What is the least number of junior volunteers needed if the selectors want at least 600 different possible ways to pick the committee?											
A.	6	В.	7	C.	8	D.	9	E.	10			
11.	Ed drives to work at a constant speed S. One day he is halfway to work when he immediately turns around, speeds up by 8 mph, and drives home. As soon as he is home, he turns around and drives to work at 6 mph faster than he drove home. His total driving time is exactly 67% greater than usual. Find S in mph and write the answer in the corresponding blank on the answer sheet.											

.

F	ebr	uarv	/M	arch	2008
-					

AMATYC Student Mathematics League

E.

84

- Page 2
- 12. Each bag to be loaded onto a plane weighs either 12, 18, or 22 lb. If the plane is carrying exactly 1000 lb of luggage, what is the largest number of bags it could be carrying?

- 13. An 8x8 checkerboard is exactly covered by $16 \square$ shaped tiles. What is the least possible number of tiles for which the \square is horizontal?
- A. 0 B. 2 C. 4 D. 6 E. 8
- 14. Call a positive integer *biprime* if it is the product of exactly two distinct primes (thus 6 and 15 are biprime, but 9 and 12 are not). If N is the smallest number such that N, N + 1, and N + 2 are all biprime, find the largest prime factor of N(N + 1)(N + 2).
- A. 13 B. 17 C. 29 D. 43 E. 47
- 15. You have 8 identical red counters and n identical green counters. You find that you can line them up in a single row in such a way that the number of counters whose right-hand neighbor is the same color equals the number of counters whose right-hand neighbor is the other color. What is the largest possible value of n?
- A. 17 B. 19 C. 21 D. 25 E. 27
- 16. If *b* and *c* are positive integers such that b/11, c/b, and c/15 all lie in the interval (1.5, 1.8), find b + c.
- A. 43 B. 44 C. 45 D. 46 E. 47
- 17. Let *r*, *s*, and *t* be nonnegative integers. For how many such triples (*r*, *s*, *t*) satisfying the system $\begin{cases} rs + t = 24 \\ r + st = 24 \end{cases}$ is it true that r + s + t = 25?
- A. 23 B. 24 C. 25 D. 26 E. 27
- 18. In $\triangle ABC$, AB = AC = 25 and BC = 14. The perpendicular distances from a point P in the interior of $\triangle ABC$ to each of the three sides are equal. Find this distance.
- A. $\frac{9}{2}$ B. $\frac{19}{4}$ C. 5 D. $\frac{21}{4}$ E. $\frac{11}{2}$
- 19. The digits 1 to 9 can be separated into 3 disjoint sets of 3 digits each so that the digits in each set can be arranged to form a 3-digit perfect square. Find the last two digits of the sum of these three perfect squares.
- A. 26 B. 29 C. 34 D. 46 E. 74
- 20. The sequence $\{a_n\}$ is defined by $a_0 = a_1 = a_2 = 1$, and $a_{n-3}a_n a_{n-2}a_{n-1} = (n-3)!$ for $n \ge 3$. If 5^k is the largest power of 5 that is a factor of $a_{100}a_{101}$, find k.
- A. 20 B. 22 C. 24 D. 25 E. 26