AMATYC Student Mathematics League

problems in common, how many problems does she write?

C. 37

B. 26

even integer, its length must be

Ms. Pham writes 2 final exams, each with 25 problems. If the exams have 12

D. 38

A triangle has two sides of length 8.1 and 1.4. If the length of the third side is an

E. 49

Test #2

A. 24

1.

2.

	A. 2	B. 4	C. 6	D.8	E. 10				
	IC (- 1-) :-	the colution	to the syste	em of equat	tions $\begin{cases} \pi x + (\pi + e)y = \pi + 2e \\ (\pi + 3e)x + (\pi + 4e)y = \pi + 5e \end{cases}$				
3.									
	find b - a. A3	В1	C.	0 D.	1 E. 3				
4.	are each re	educed by 1	and written	in increasin	distinct prime factors 3, 11, and 61 ng order (that is, 2, 10, 60) each year with this property.				
	A. 2014	B. 2015	C. 2016	D. 2017	E. 2018				
5.					mx - 6 intersect at a point on the x- 3b D. m + 3b = 0 E. 3m = b				
6.	Find the smallest positive integer value of n for which $\frac{1}{a} + \frac{1}{b} = \frac{1}{n}$ has at least three								
		(a, b) in integral			7				
	A. 3	B. 4	C. 5	D. 6	E. 8				
7.		ion a ³ + b ² + f 5. Find a +			on in positive integers for which b is a				
	A. 55	B. 57	C. 59	D. 61	E. 63				
8.	Each letter A through Z of the alphabet is assigned a unique integer from 2 to 27. $A \cdot M \cdot A \cdot T \cdot Y \cdot C = 3^2 \cdot 5^2 \cdot 7 \cdot 11^2$, find M + T + Y + C.								
	A. 30	B. 34	C. 36	D. 38	E. 42				
9.		The third-degree polynomial $P(x)$ has only nonnegative integer coefficients. If $P(0)\cdot P(3) = 139$ and $P(1)\cdot P(2) = 689$, find $P(-1)$.							
	A2	B1	C. 0	D. 1	E. 2				
10.	Find the smallest positive value of t such that cos t is the same whether t is in radians or in degrees. Write your answer (rounded to 3 decimal places) in the corresponding blank on the answer sheet.								
11.	In quadrilateral ABCD, AB = 6, BC = 6, CD = 8, AD = 10, and \angle C = 90°. If the ang bisector of \angle A meets diagonal BD at point E, find BE.								
	A. $\frac{15}{4}$	B. 4	C. 5	D. 6	E. $\frac{25}{4}$				

A. 625

12.

Line L has intercepts 2 and 4, while line M has intercepts 4 and 6. If L and M

intersect at (a, b), which of the following could NOT be 3a + b?

	A. 0	B. 4	C. 8	D. 12	E. 32				
13.	months, an	nd each succ	essive trip v 1/2012, wh	vas 2 days lo ich of these	onger than the p	was less than 3 previous trip. If her in days of one of her 77			
14.	different bi	ring is a seq nary strings d up to 1111	of length 6	and 0's, suc are there su	h as 10011 or 1 ach that no two	1101010. How many are reversals of each			
	A. 22	B. 23	C. 24	D. 25	E. 26				
15.	In quadrilateral PQRS, $\angle P = \angle Q = \angle S = 45^\circ$, $\angle QPR = \angle RPS$, and $PR = 8\sqrt{2}$. Find the area of quadrilateral PQRS to the nearest integer.								
	A. 60	B. 61	C. 62	D. 63	E. 64				
16.	first is 2 m such pair v	The numbers 2 and 1 are the smallest positive integers for which the square of the first is 2 more than twice the square of the second. If a and b are the smallest such pair with a > 10, find a - b.							
	A. 13	B. 15	C. 17	D. 19	E. 21				
17.	A number is chosen at random from among all 5-digit numbers containing exactly one each of the digits 1, 2, 3, 4, and 5. Find the probability that no two adjacent digits in the number are consecutive integers.								
	A. $\frac{1}{10}$	B. $\frac{7}{60}$	C. $\frac{2}{15}$	D. $\frac{3}{20}$	E. $\frac{1}{6}$				
18.	The triangular region with vertices (0, 0), (4, 0), and (0, 3) is rotated 90° counter-clockwise around the origin. Find the area of the figure formed by this rotation to the nearest hundredth.								
	A. 19.96	6 B. 2	20.04	C. 20.12	D. 20.2	0 E. 20.28			
19.	For how m polynomial	any pairs of ls x ² + mx +	positive inte n and x² + n	egers (n, m) v nx - n factor	with n, m < 100 able over the in	are both of the tegers?			
	A. 4	B. 5	C. 6	D. 7	E. 8				
20.		ACD and BCl 2D = 50. If Al			e inscribed in a their union.	semicircle with			

D. 673.5

E. 675

B. 637.5 C. 652.5

AMATYC Contest, Round 2,

March 2013

①
$$25+25-12=38$$
 ② $8.1-1.4 < x < 8.1+1.4$

$$\begin{cases}
6.7 < x < 9.5 \\
x = even
\end{cases}$$

$$x = 8$$

①
$$25+25-12=38$$
 ① ③ $3x+(\pi+e)y=\pi+2e$
② $8.1-1.4 < x < 8.1+1.4$ $(3+3e)x+(\pi+4e)y=\pi+5e$ $(2015=5\times13\times31, 3)$ $(3+3e)x+3ey=3e$ $(3+3e)x+(\pi+4e)y=\pi+5e$ $(3+3e)x+(\pi+4e)x+(\pi+4e)y=\pi+5e$ $(3+3e)x+(\pi+4e)x+(\pi+4e)x+(\pi+4e)x+(\pi+4e)x+(\pi+4e)x+$

$$\begin{array}{|c|c|c|c|c|}\hline (4) & 2014 = 2 \times 19 \times 53, \\ 2015 = 5 \times 13 \times 31, \\ & 2016 = 2^{5} \times 3^{2} \times 7, \\ \hline (C) & \boxed{1,2,6} \end{array}$$

$$\begin{array}{c|c}
\hline
5 & 2x+b=0 \longrightarrow \frac{-b}{2} \\
mx-6=0 \longrightarrow \frac{6}{m}
\end{array}$$

$$\begin{array}{c|c}
-\frac{b}{2} = \frac{6}{m} \\
|2+bm=0
\end{array}$$

$$\begin{array}{c|c}
\hline
7 & 4^3+10^2+43^2=2013 \\
4+10+43=57
\end{array}$$

$$\begin{array}{c|c}
B
\end{array}$$

(6)
$$\frac{1}{a} + \frac{1}{b} = \frac{1}{n}$$
, $b = \frac{an}{a-n}$, $y = \frac{x \cdot 4}{x-4}$ (TI) $\frac{x}{y}$ $\frac{5}{20}$ $\frac{6}{12}$ $\frac{8}{8}$

(8)
$$A = 11 \text{ (only!)}, 3 + 3 \times 5 + 5 + 7 = 30 \text{ A}$$

$$(3) 366 = 56 + (8) + 60 + 62 + 64 + 66 (B)$$

(13)
$$366 = 56 + 58 + 60 + 62 + 64 + 66$$
 (B)

(15) $\frac{x}{\sin 112.5^{\circ}} = \frac{8\sqrt{2}}{\sin 45^{\circ}}, x = 14.782$

A= $2A_1 = 2 \cdot \frac{1}{2} \cdot 8\sqrt{2} \times \sin 22.5 = 64$ (E)

Answer: $4 + 28 = 32$

(14)
$$total = 2^6 - 64$$
,
reversal of itself = $2^3 - 8$,
add up to 111111: $\frac{8}{2}$ and $\frac{64 - 8}{2} = 28$
Answer: $4 + 28 = 32$

(6)
$$a^2 = b^2 \times 2 + 2$$
, $a = \sqrt{2b^2 + 2}$ $(a,b) = (2,1)$; $(12,7)$; $(58,41)$... (TI) (C)

$$(9) (m,n) = (5,6); (13,30); (10,24); (15,54); (17,60); (20,96); (25,84) (TI)$$

$$AC = 48, BC = 30, \frac{A_2}{A_1} = \frac{(30)^2}{(14)^2} \Rightarrow A_2 = \frac{225}{49} A_1$$

$$A_3 = \frac{30 \times 40}{2} - \frac{225}{49} A_1 = \frac{48 \times 14}{2} - A_1 \Rightarrow A_1 = 73.5; 600 + 73.5$$