1. Today 1 euro is worth 1.25 dollars. If the value of the euro in dollars increases by 10% tomorrow, approximately how many euros will 2.20 dollars be worth then?
A. 1.50
B. 1.58
C. $\quad 1.60$
D. 1.76
E. 1.94
2. The lines with equations $2 \mathrm{x}-\mathrm{y}=\mathrm{a}$ and $\mathrm{y}-\mathrm{x}=\mathrm{b}$ intersect at the point (p, q). Find the value of q.
A. $a+b$
B. $a-b$
C. $2 \mathrm{a}+\mathrm{b}$
D. $a+2 b$
E. $2 \mathrm{a}-\mathrm{b}$
3. Find $\log _{10}\left(\log _{10}\left(\log _{10} 10^{10000000000}\right)\right)$.
A. 0
B. 1
C. 2
D. 3
E. 6
4. The digits of a number are rearranged, and the resulting number is added to the original number. How many of the numbers below could NOT equal this sum?
777
7,777 77,777
777,777
7,777,777
A. 0
B. 1
C. 2
D. 3
E. 4
5. Perpendicular lines L and M have equations $A x+B y=D$ and $C x+A y=E$, respectively $(A \cdot B \neq 0)$. If the sum of these equations is $6 x+10 y=12$, one of the lines must have slope
A. -2
B. $-\frac{1}{2}$
C. $-\frac{1}{4}$
D. $\frac{1}{4}$
E. 4
6. In the equation AMA - TYC = SML, identical letters are replaced by the same digit 0 to 9 , and different letters are replaced by different digits 0 to 9 . If $\mathrm{A}=4$, which of the following is a possible value of M?
A. 1
B. 3
C. 6
D. 8
E. 9
7. In a sample of 5 positive data values, the median, minimum, and range are all equal, and the mean equals one of the values. The ratio of the maximum to the mean is
A. 1.6
B. $\quad 1.75$
C. $\quad 1.8$
D. 2
E. $\quad 2.4$
8. The points $(6,4)$ and $(2,10)$ are symmetric with respect to the line L. An equation for line L is
A. $2 \mathrm{x}-3 \mathrm{y}=13$
B. $3 x+2 y=26$
C. $2 x+3 y=29$
D. $3 y-2 x=13$
E. $2 \mathrm{y}-3 \mathrm{x}=2$
9. The solution to the equation $\left(\log _{8} x^{2}\right)\left(\log _{x} 8\right)^{2}=1$ satisfies which inequality below?
A. $0<x \leq 1$
B. $1<x \leq 10$
C. $10<\mathrm{x} \leq 50$
D. $50<x \leq 100$
E. $x>100$
10. Knaves always lie; knights always tell the truth. Al says, "Bo is a knight," Bo says, "Cy is a knave," and Cy says, "Exactly one of Al and Bo is a knave". If Al, Bo, and Cy are each either a knight or a knave, it is true that
A. Al and Cy are both knights
B. Al and Cy are both knaves
C. Al is a knight, Cy is a knave
D. Al is a knave, Cy is a knight
E. it cannot be determined what Al and Cy are
11. The equation $a^{4}+2 b^{2}+c^{2}=2013$ has a unique solution in positive integers. For this solution, find $a+b+c . \quad$ A. 36 B. 37 C. 38 D. 39 E. 40
12. In the sequence $\left\{a_{n}\right\}, a_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n-1}}{n-1}$ for $\mathrm{n} \geq 3$. If $a_{1}+a_{2} \neq 0$ and the sum of the first N terms is $12\left(a_{1}+a_{2}\right)$, find N .
A. 16
B. 18
C. 20
D. 22
E. 24
13. If $\mathrm{S}=\left\{(x, y): x, y\right.$ are integers and $\left.x^{2}=4 y^{2}+81\right\}$, how many elements are in S ?
A. 2
B. 4
C. 6
D. 8
E. 10
14. Find the value of k for which the equation $|k-\|x \mid-6\|=2$ has exactly 5 solutions. Write your answer in the corresponding blank on the answer sheet.
15. All fractions $0<\frac{a}{b}<1$ (a, b positive integers) are placed into the sequence $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \cdots$ first by increasing order of denominator and then by increasing order of numerator. Find $a+b$ for the $2013^{\text {th }}$ element of the sequence.
A. 124
B. 125
C.
126
D. 127
E. 128
16. In parallelogram $A B C D, \overline{B C}$ is extended beyond point C to point E. Points F and G are the points of intersection of $\overline{A E}$ with $\overline{B D}$ and $\overline{C D}$, respectively. If $F G=12$ and $E G=$ 15 , find $A F$.
A. 16
B. 18
C. 20
D. 24
E. 27
17. Ha and Mo play the following game: a fair coin is flipped repeatedly. Ha chooses a 3outcome sequence, and then Mo chooses a different 3-outcome sequence. Whoever's sequence occurs first wins. If Ha chooses HHH , which choice gives Mo the greatest probability of winning?
A. THH
B. THT
C. TTH
D. HTT
E. TTT
18. If Mo chooses the optimal sequence in Problem 17, the probability that Mo wins is
A. $\frac{3}{5}$
B. $\frac{5}{8}$
C. $\frac{3}{4}$
D. $\frac{4}{5}$
E. $\frac{7}{8}$
19. All of the coefficients of the fourth degree polynomial $P(x)$ are odd integers. Find the maximum possible number of rational solutions of the equation $\mathrm{P}(\mathrm{x})=0$.
A. 0
B. 1
C. 2
D. 3
E. 4
20. In rectangle $A B C D$, point E lies between A and B and point F lies between B and C. The areas of $\triangle \mathrm{ADE}, \triangle \mathrm{EBF}$, and $\triangle \mathrm{DCF}$ are all equal. If $\mathrm{AB}=4$ and $\mathrm{BC}=2$, find the ratio of the area of $\triangle \mathrm{DEF}$ to the area of $\triangle \mathrm{ADE}$.
A. $\frac{4 \sqrt{3}}{3}$
B. $\sqrt{5}$
C. $2 \sqrt{2}$
D. $\frac{2 \sqrt{10}}{3}$
E. $\sqrt{6}$

College: - ANSWER KEY ROUND 1 2013-2014
LAST NAME:

FIRST NAME: \square

EMAIL ADDRESS

	Student's Responses	Local Corrector
1	\mathbf{C}	
2	D	
3	B	
4	\mathbf{B}	
5	D	
6	B	
7	A	
8	D	
9	D	
10	\mathbf{C}	
11	B	
12	\mathbf{E}	
13	\mathbf{E}	
14	$\mathbf{8}$	
15	A	
16	B	
17	A	
18	E	
19	A	
20	B	

INSTRUCTOR \qquad

GENDER: Male Female
Do you have a two-year college or higher degree from any school in the world?
YES NO

For Corrector Use Only

$$
\text { ROUND: (1) } 2
$$

\qquad
\# incorrect = \qquad
\# blank = \qquad
\# correct $\times 2=$

\# wrong $\times \frac{1}{2}=$

score $=$

\square

